A Fast Time-Domain Finite Element–Boundary Integral Method for Electromagnetic Analysis
نویسندگان
چکیده
A time-domain, finite element–boundary integral (FE–BI) method is presented for analyzing electromagnetic (EM) scattering from two-dimensional (2-D) inhomogeneous objects. The scheme’s finite-element component expands transverse fields in terms of a pair of orthogonal vector basis functions and is coupled to its boundary integral component in such a way that the resultant finite element mass matrix is diagonal, and more importantly, the method delivers solutions that are free of spurious modes. The boundary integrals are computed using the multilevel plane-wave time-domain algorithm to enable the simulation of large-scale scattering phenomena. Numerical results demonstrate the capabilities and accuracy of the proposed hybrid scheme.
منابع مشابه
Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry
In this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons with the finite elementboundary integral method are given in terms of accuracy and computing resources. We also discuss preconditioning, parallelization of the multilevel fast multipole method and propose higher-ord...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملA General Approach for the Stability Analysis of the Time-Domain Finite-Element Method for Electromagnetic Simulations
This paper presents a general approach for the stability analysis of the time-domain finite-element method (TDFEM) for electromagnetic simulations. Derived from the discrete system analysis, the approach determines the stability by analyzing the root-locus map of a characteristic equation and evaluating the spectral radius of the finite element system matrix. The approach is applicable to the T...
متن کاملAntennas and Propagation in the Presence of Metamaterials and Other Complex Media: Computational Electromagnetic Advances and Challenges
There have been significant advances in computational electromagnetics (CEM) in the last decade for a variety of antennas and propagation problems. Improvements in single frequency techniques including the finite element method (FEM), the fast mulitipole moment (FMM) method, and the method of moments (MoM) have led to significant simulation capabilities on basic computing platforms. Similar adv...
متن کاملHybrid Finite Element-Fast Spectral Domain Multilayer Boundary Integral Modeling of Doubly Periodic Structures
Hybrid finite element (FE) boundary integral (BI) analysis of infinite periodic arrays is extended to include planar multilayered Green’s functions. In this manner, a portion of the volumetric dielectric region ci~n be modeled via the finite element method whereas uniform multilayered regions can be modeled using a multilayered Green’s function. As such, thick uniform substrates can be modeled ...
متن کامل